------ # Network Centric Warfare **Written By:** - David S. Alberts - John J. Garstka - Frederick P. Stein **See:** Alberts_NCW.pdf --------- ## Battlespace Entities The task at hand is to design a set of battlespace entities and a set of interconnections (an enterprise of networked or linked entities) that can take full advantage of the increased amount of information available, turn this information into knowledge, and generate increased combat power. In other words, leverage shared battlespace awareness to allocate, assign, and employ assets and then modify these allocations, assignments, and employments as awareness of the situation changes. In some operational situations, a desired objective is to achieve battlefield results that approach a global optima without using a centralised approach, thus avoiding the significant shortcomings associated with centralised approaches. In other operational situations, a premium must be placed on flexibility and adaptability vice solely focusing on optimisation. Consequently, the concept of dynamic fitness must play a key role in both the design and employment of forces. Transforming NCW from a concept into a reality requires that we define the battlespace entities (their roles, responsibilities, tasks, and decisions), their connectivity (links among them), and the nature of the information and products that are exchanged (the degree of coupling). It is the extent and nature of the interactions among battlespace entities that generate the power of NCW. We have chosen to focus this discussion on battlespace entities somewhat abstractly to illuminate the underlying fundamentals of NCW. Battlespace entities have three primary functional modes: sensing, deciding, and acting. The degree to which one functional mode dominates at a particular point in time determines the role of an entity in a military operation. Entities that have a primary function of sensing are called sensors. Sensors include all entities that contribute to battlespace awareness, from satellites to “eyes on the ground.” Actors are those entities that have the primary function of creating “value” in the form of “combat power” in the battlespace. Actors employ both traditional (lethal) and nontraditional (nonlethal) means. Decision makers perform a variety of functions (e.g., making resource allocation decisions) and are found at all levels of the organisation. Battlespace entities will need to be connected in some fashion, but how they need to be connected is not predetermined. Moreover, we do not want to imply a universal connectivity where every node is directly connected to every other node, or that all nodes are provided with the same level of information services. That being said, NCW is based upon sharing information and assets to achieve synergistic, collaborative effects, and it is unlikely that the proper degree of coupling can be realised without having a high-performance, communications, and computational capability providing access to appropriate information sources, and allowing seamless interactions among battlespace entities in a “plug and play” fashion. This is called the “infostructure.” Determining the nature of this enabling infostructure and the best way to acquire it present significant challenges. There has been a tendency, in the effort to explain NCW, for its proponents to speak in conceptual terms, and others to hear in literal terms. NCW can only be effectively reduced to simple vu-graphs if everyone understands that the links portrayed are only notional, and that in reality it is the specifics that count—which links exist, what information is passed, and what is done with the information. It is not hard to understand a battlespace with three kinds of entities. Everyone seems to understand that these can be located throughout the battlespace (either in fixed locations or increasingly as mobile) and that a wide variety of sensors would exist. Further, there seems to be no difficulty when it comes to the notion that some entities may, in fact, have complex functionality—e.g., perform the roles of sensing and acting at the same time. The difficulty seems to be in understanding the nature of the links among entities, and in appreciating the combat power associated with the network-centric operations that the links enable. The nature of the connectivity and the division of responsibilities remain the central issues that need to be explored as experimentation with NCW begins. It is here that some confusion exists. This confusion is a result of the tendency to move from the specific to the collective as the discussion shifts from entities to links. From this collective, or global, vantage point a collection of sensors (or as it is often depicted, a “network of sensors”) can be viewed as providing the information from which battlespace awareness is generated. This sort of picture implies that somehow all of the sensors are actually linked together. While this makes sense conceptually, it may not make sense in practice. NCW focuses attention both on the appropriate linking of sensor entities, and on the contributions they make to generating shared battlespace awareness. Developing shared battlespace awareness requires that sensor entities (or rather the information they generate) be linked in some fashion. This does not mean that all sensor entities need to be directly linked to one another; neither does this mean that they all need to be linked into a single sensor network. In most cases, sensor networks require only that a subset of battlespace sensors be task organised and provided with high performance information services. Shared battlespace awareness requires that the information collected by sensors be put in a form that makes it possible for other battlespace entities (but not necessarily all others) to fuse appropriate information, place it in context, and understand its implications. This will permit the sharing of information that is so important to begin reaping the potential power of NCW. From a global vantage point, battlespace awareness seems as if it exists as a single thing. Battlespace awareness really exists in a distributed form. We really only see a slice of it at one time—either a particular detail or a gross overview without details. In fact, research results indicate that the ability to move up and down levels of abstraction without introducing distortions distinguishes effective from ineffective utilisation of knowledge. This tendency in discussing NCW to move from the global or collective vantage point (where we consider conceptual relationships) to the specifics (where we think about actual links among entities) has created confusion about what NCW really means and the ways to achieve it. In the same way that sensor entities will be linked to many more entities than they currently are, so will actor entities be more richly linked as well. Again, this does not imply all actors will be linked to an actor network, or exclusively or primarily to other actors. Rather that actors (e.g., shooters) will have a far richer collection of links to other battlespace entities than they do with platform-centric operations. In the future they will be linked to each other, directly to sensor entities, or indirectly to sensor entities by virtue of having direct access to their products (individually and/or collectively). The purpose of linking actor entities in this fashion is to make them better informed and to increase their overall effectiveness. Making them better informed means they need to know more not only about the classification and position of enemy assets, but also about a host of other things. For example, they need to know the overall situation, the commander’s intent, the current and planned positions, and the intended actions of other battlespace entities, including neutrals. With this increased knowledge comes better understanding, which carries with it the ability to do a better job of developing insights, and generating combat power. This brings us to the relationships that sensor and actor entities will have with decision (or command) entities. Obviously, decision entities must be linked to both sensor and actor entities, as well as to other decision entities. The link between a decision entity and a sensor entity (or entities) can be either direct or indirect. The link may transfer raw data or products. It may be one-way, two-way, or interactive. These are only some of the possibilities. Decision entities may be linked to other decision entities and actors in a similar variety of ways. NCW has often been articulated somewhat abstractly where sensors and actors are richly interconnected. This is a conceptual representation and should not be taken literally. The point to be made is that information collected by sensors can be brought to bear in a far more flexible way than is currently possible, with the selection of the actor not being as restricted as it currently is in platform-centric configurations. A major difference between NCW and traditional approaches to warfare is that in NCW, actors (shooters) do not inherently own sensors, and decision makers do not inherently own actors. In platform-centric operations, platforms own weapons and weapons have their own organic sensors. For example, in the Air Defence Mission Area, the commander of a Hawk Missile Battery has dedicated sensors and absolute control over the employment of his missiles. His organic sensing capabilities cannot be exploited by others and his weapons cannot be assigned by others. In contrast, with NCW, all three types of entities work collaboratively in response to the dynamics of the battlespace to achieve commanders’ intent. This enables decision and actor entities to play a wide variety of roles. The net result will be a dynamically re-configurable force that can take on the characteristics best suited for fast-paced battlespace domains where opportunities are fleeting and delay can be fatal. Continuing the Air Defence example with network-centric operations, the operational constraints that are currently associated with platform-centric operations may be eliminated in situations when it would make sense for a Hawk Missile Battery’s sensors or missiles to be tasked by another battlespace entity, such as a commander with responsibilities for the Joint Theater Air and Missile Defence Mission. This does not imply that it is a “free for all” on the battlefield; rather, the point is that all assets can be employed more flexibly, resulting in a more agile force. Exactly how this aspect of NCW will work remains to be developed as part of the implementation of JV2010, particularly the series of Joint experiments that will be an integral part of this process. NCW is offered to provide a rich source of hypotheses to be tested and refined, and a conceptual framework to focus the experiments and analyses ahead. We have seen how NCW frees us from a host of constraints that currently restrict how we use the information our sensors generate, and how we employ our actors. We also have seen how breaking down these constraints offers the opportunity to reap the power of the network that is inherent in Metcalfe’s Law. In the next chapter, the roles of battlespace entities are discussed in detail, and the coupling of these entities, combined with increases in weapons reach, improved manoeuvrability of armoured forces, and enhanced precision weapons, will enable a vastly increased speed of command which can generate more force effects in a given period of time. Although we still have a tendency to use the vocabulary of combat at the tactical level, NCW is applicable to all levels of warfare and contributes to the coalescence of strategy, operations, and tactics. Its ability to contribute to military operations by increasing shared awareness extends to a wide variety of missions, force sizes, and force compositions.